
T a n n e r E D A L - E d i t ™ L a y o u t E d i t o r

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Data Formats

�#Format Definitions �#RUL Files

�#CAP Files �#SPC Files

�#CIF Files �#TDB Files

�#DRC Files �#TPR Files

�#EXT Files �#TTX Files

�#GDS II Files �#XST Files

�#INI Files

D a t a F o r m a t s F o r m a t D e f i n i t i o n s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Format Definitions

L-Edit utilizes twelve different file formats. Following is a list of the formats and
a brief description of each. For more information on a format, click on the link
for each file type.

� CAP – Nodal properties files

� CIF – Caltech Intermediate Form files

� DRC – Design rule errors text file

� EXT – Extract definition files

� GDS II – Stream files

� INI – Application configuration files

� RUL – Design rule text files

� SPC – Extract netlist files

� TDB – Tanner database files

� TPR – Tanner Place and Route files

� TTX – Tanner text files

� XST – Cross-Section process definition files

D a t a F o r m a t s C A P F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

CAP Files

Syntax

Note: The following text file is broken into two sections here to ensure readability on
the page. In an actual CAP file, all of the information pertaining to an individual
node is on a single line.

$ --
$ Nodal Properties File: C:\documentation\bargraph.cap
$ SPR Date and Time : 04/01/1998 - 07:01
$
$ 1 LU = 1/1 Lambda
$ 1 LU = 1/1 Micron(s)
$
$ Syntax:
$ Node Capacitance NoOf M1Area M1Length M1Area
$ Terminals NoOvlap NoOvlap M2Ovlap
$ (1/100 pF) (LU^2) (LU) (LU^2)
$ --

N66 100 9 27039.0000 9013.000 1143.0000
N2 27 2 6705.0000 2235.000 396.0000
N4 27 2 4470.0000 1490.000 180.0000
N6 16 2 3951.0000 1317.000 126.0000
N8 30 2 6117.0000 2039.000 243.0000
N10 18 2 4908.0000 1636.000 180.0000

D a t a F o r m a t s C A P F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

:

[continued]

M1Length M2Area M2Length M2Area M2Length
M2Ovlap NoOvlap NoOvlap M1Ovlap M1Ovlap
(LU) (LU^2) (LU) (LU^2) (LU)

--

[N66] 381.000 5932.4000 1977.467 3529.0000 1176.333
[N2] 132.000 2423.0920 807.697 641.0000 213.667
[N4] 60.000 3567.7240 1189.241 1916.0000 638.667
[N6] 42.000 1622.5400 540.847 619.0000 206.333
[N8] 81.000 3509.3560 1169.785 1724.0000 574.667
[N10] 60.000 1673.1720 557.724 414.0000 138.000

:

Interpretation

Each line in the file is in the format:

node nodal_capacitance #_of_terminals
M1_area_no_overlap M1_length_no_overlap
M1_area_M2_overlap M1_length_M2_overlap
M2_area_no_overlap M2_length_no_overlap
M2_area_M1_overlap M2_length_M1_overlap

where node is the name of the node, nodal_capacitance is an integer denoting
capacitance on the node in hundredths of a picofarad, and #_of_terminals is the
number of pins attached to this node. M1_area_no_overlap ,

D a t a F o r m a t s C A P F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

M1_length_no_overlap , M1_area_M2_overlap , and M1_length_M2_overlap
denote the length and area of the route taken by this node on layer Metal 1
without and with overlaps to any other route in layer Metal2.
M2_area_no_overlap , M2_length_no_overlap , M2_area_M1_overlap , and
M2_length_M1_overlap denote the length and area of the route taken by this
node on layer Metal 2 without and with overlaps to any other route in layer
Metal 1.

For a detailed description of how nodal capacitances are calculated, see Output
Options.

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

CIF Files

Caltech Intermediate Form (CIF) is a standard, machine-readable format for
representing IC layout. CIF files are typically saved with the .cif extension.

Importing and Exporting

CIF files are loaded with File > Import Mask Data and saved with File > Export
Mask Data , and by selecting CIF in the Import/Export file type drop-down
menu. Unlike previous versions of TDB files, which are saved with the .tdo
extension, backup files of previous CIF files are not created. Instead, when you
try to write to an existing CIF file, L-Edit presents a warning about overwriting
the file.

Geometry on hidden layers, or layers without legal CIF names, cannot be written
out in CIF format. If this is attempted, then a warning appears.

Interpretation

Caltech Intermediate Form (CIF) is an ASCII file format for the interchange of
mask geometry information among IC designers and foundries. CIF is defined in
Introduction to VLSI Systems by Mead and Conway (Addison-Wesley, 1980).

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

A CIF file may contain a single design or a library of designs. CIF assumes a
right-handed geometry, with the x-axis increasing to the right and the y-axis
increasing upward. The basic unit of measurement is 0.01 micron.

Commands may be used to scale object sizes, use different layers, and change the
placement of objects. Comments may be added to a CIF file by enclosing them in
parentheses. All CIF commands and comments must be terminated with
semicolons.

Symbols

CIF symbols are defined with the DS and DF commands. DS begins a symbol
definition:

DS nnn a b ;

where nnn is the symbol number and a and b are the (optional) scaling factors.
All commands that follow the DS command and precede the DF command are
included in the symbol. CIF symbols are always given numeric names.

The optional scaling factors a and b are applied to the integer coordinates and
distances within a symbol by multiplying each value by a and then dividing the
result by b. Scaling helps to shorten the length of CIF files by eliminating trailing
zeros. By default, coordinates and distances in CIF are specified in units of 0.01
micron; a = 100 and b = 1 would allow values to be specified in microns instead.
The coordinates (10,6) with a = 100 and b = 1, for example, are equivalent to

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

(1000,600) with a = 1 and b = 1. If a and b are not specified, then they are both
assumed to be 1, and all integers are mapped to the 0.01 micron standard.

The DF command ends the last open DS command:

DF; (end of symbol definition);

If no symbol is open when a DF command is encountered, then a warning
message is generated.

Symbols may be instanced within other symbols and are functionally equivalent
to L-Edit cells.

Calls (Instances)

Once a symbol is defined, it may be instanced with the C (call) command. In
addition to instancing the named symbol, the C command also permits a variety
of optional transformations to be applied:

C integer transformation;

where integer is the number of the symbol being called and transformation is an
optional transformation. A transformation may be composed of several
translations, mirrors, or rotations. Combinations of transformation operations are
unambiguously applied from left to right as they are encountered within the

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

command. Great care should be exercised when determining the order of
transformation operations since the commutative property does not hold.

The translation operation specifies a coordinate. The coordinate represents the
endpoint of a vector originating at (0,0). For example:

C 55 T -100,10; (call command with translation);

calls symbol 55 and translates it 100 units in the negative x direction and 10 units
in the positive y direction.

The mirroring operations, MX and MY, correspond to multiplying the x and y
coordinates by –1, respectively. For example:

C 99 MX; (call symbol 99 and flip horizontally);
C 22 MY; (call symbol 22 and flip vertically);

The rotation operation rotates the called symbol in the specified direction.
Direction is indicated by a direction vector: a coordinate whose vector from the
origin (0,0) sets the angle to which the symbol’s x-axis is rotated. Only the
direction of the vector is significant; the magnitude is ignored. For example:

C 44 R 0,1; (call command with rotation);

calls symbol 44 and rotates its x-axis by 90°.

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Geometric Primitives

CIF provides commands for creating four types of geometric primitives: boxes,
polygons, roundflashes (circles), and wires.

The B (box) command defines a rectangular box of fixed width and length. The
center coordinates locate the box, and a direction vector indicates its orientation.
For example:

B 25 60 80,40 -20,20; (box command);

describes a box of length 25 and width 60, with center at (80,40) and direction
vector (–20,20). The length of the box is parallel to the direction vector, and its
width is perpendicular to the direction.

The P (polygon) command defines a polygon with a certain number of sides and
vertices. P accepts a path of coordinates and creates the enclosed polygonal
region in the order in which the vertices are specified (the edge connecting the
last vertex with the first is implied). For example:

P 0,0 0,40 20,40 20,20 40,20 40,0;

describes an L-shaped polygon with vertices at (0,0), (0,40), (20,40), (20,20),
(40,20), and (40,0).

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

The R (roundflash) command defines a roundflash (circle) of fixed diameter and
position. For example:

R 100 -200,350; (roundflash command);

describes a circle of diameter 100 with center at (–200,350).

(40,20)

(40,0)

(0,40) (20,40)

(20,20)

(0,0)

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

The W (wire) command defines a wire with fixed width along a specified path. A
wire can be described as a long run of uniform width; ideally, the locus of points
within one-half width of the given centerline or path and one-half width of the
endpoints (semicircular caps). For example:

W 40 0,0 0,100 100,100; (wire command);

describes a wire of width 40 with centerline vertices at (0,0), (0,100), and
(100,100).

(–200,350)

50

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Layers

All primitive geometry elements must be associated with a particular fabrication
mask or technology layer. Layers are specified with the L (layer) command.
Primitives created after an L command belong to that layer until the layer is reset
by the next L command. The form of the L command is:

L shortname ; (layer command);

40

20

(0,100) (100,100)

(0,0)

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

where shortname is the 1–4 character layer name. Layer names must be unique
and correspond to fabrication masks being constructed. You should therefore
take care that the layer names you use accord with the conventions established by
your fabricator. Setup Layers – General correlates CIF layer names and
technology layers; the CIF names are used instead of the L-Edit layer names
during the conversion of the design file into CIF. Layer names that do not
conform to legal CIF syntax must be modified before saving. Layer name
specifications are preserved across symbol calls.

Layer names in the setup file must agree with the layer names of CIF files read
in; otherwise, the geometry information on the non-matching layers in the CIF
file will be transferred to the Icon layer. Your fabricator may apply additional
restrictions and extensions to the CIF standard.

Restrictions

One piece of information which must be supplied to your fabricator is the name
of the cell which represents the top level of your design. The fabricator will
typically choose the top-level cell in your design, if it is the only such cell.
However, if you do not specify this information and your fabricator has a choice
about which cell to fabricate, the wrong one might be chosen.

L-Edit does not accept geometry other than CIF symbols. A CIF call (instance) to
the top level of a design is achieved with Cell > Fabricate . Fabricate causes a
CIF C command (or call to the selected cell) to be created at the top level,
effectively identifying that cell as the cell to be fabricated. L-Edit only allows a

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

single call outside of a symbol definition. If any rotations or transformations are
embedded in this outside call, L-Edit suppresses them when the file is read.

Warning: Once a fabricate cell has been chosen, it will remain the fabricate cell until a new
one is chosen, even if it ceases to be the top-level cell in your design. Be sure to
check the fabricate cell before writing a CIF file!

L-Edit accepts forward references (symbol calls before the symbol definitions
they reference). L-Edit also removes forward references during conversion of the
design into CIF.

L-Edit does not support the CIF DD (delete symbol definition) command.

Extensions

L-Edit supports two user extensions to the basic CIF syntax. The first extension
is a cell name extension of the form:

9 cellname ;

where cellname is the name of the currently open CIF symbol. This command
can only appear within the context of an open symbol (between a DS/DF
command pair). The cell name may contain spaces and must be terminated with a
semicolon. Duplicate, zero-length, and null cell names are not permitted.

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

If a CIF file does not define cell names for CIF symbols, then L-Edit
automatically assigns as the cell name the expression:

(DS nnn)

where nnn is the CIF symbol number. This definition is suppressed when the CIF
file is written out. You should therefore avoid naming cells with this syntax, or
else the name will be suppressed during CIF file conversion. L-Edit reads out-of-
order cell numbers, but always orders cells by number while writing out the
design in CIF.

The second user extension is a port extension of the form:

94 portname x y layer ;

where portname is the name of the port (label), x and y are the coordinates of the
port, and layer is the name of the port’s layer. This is a relatively standard port or
label user extension to CIF. However, it is not as flexible as L-Edit’s definition of
a port. An L-Edit port can be a point, a line, or a box, and the text can be rotated
in a variety of ways; this CIF user extension can only represent a single point,
with no information on the position or rotation of the associated text. When
L-Edit writes a port into a CIF file, it computes the centerpoint of the port and
records this in the CIF file as the position of the port. You can preserve the box
associated with the port in CIF as written by L-Edit by checking the Write
Port-boxes option in the File > Export Mask Data , Options button dialog. This
results in the use of nonstandard notation for ports, and other software tools may
not be able to read this form of CIF. To read this CIF back into L-Edit, you must

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

check the Read rectangular polygons as boxes option in the File > Import
Mask Data , Options button dialog before reading the file.

Wires

CIF was developed at a time when masks were usually created by Gerber
photoplotters. Such plotters could make wires by opening a circular aperture and
moving it along a pathway. The resulting wire would therefore have rounded
corners and ends. This fabrication method gave rise to the CIF specification for
rounded wires. However, present-day mask making is almost entirely raster-
based, and thus has a strong affinity toward orthogonal structures. So many
fabricators assume CIF wires to have extended wire end styles with mitered
corners. Thus to adhere to the fabricators’ implementation of wires, all your CIF
wires should be of extend end style and layout join style. Upon fabrication, many
fabricators such as MOSIS and Orbit run both CIF and GDS II files through
CATS (a high-end program used by many fabricators and mask houses to
produce formats for specific mask-making equipment from GDS II and CIF
layout files). CATS uses its own clipping algorithm for acute angle CIF wires
and GDS II paths with a pathtype of 0 or 2. This algorithm corresponds exactly
with the L-Edit wire layout join style, the default wire join style, which employs
a miter length of one-half the width of the wire for wires with an acute join angle.
You should check with your fabricator concerning the exact method of
fabrication used for wires before using wires in your layout.

D a t a F o r m a t s C I F F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Scaling

Apart from the user-selectable scaling of L-Edit’s internal units, L-Edit
incorporates an implicit scaling factor while writing CIF files. Due to the manner
in which geometric objects are represented in CIF, it is necessary for L-Edit to
apply an implicit multiplication factor of two to all geometry as it is written out
to CIF. The reason for this scaling is that CIF represents boxes with integer
length, width, and center coordinates. L-Edit, however, can create boxes with
fractional center coordinates: a box of width and length 3 with lower left corner
at (0,0) has its center at (1.5,1.5), for example. L-Edit circumvents this problem
by multiplying all coordinates by two when writing a CIF file. The same box,
after being written out to a CIF file, would have a length and width of 6 and be
centered at (3,3). L-Edit incorporates this multiplication by 2 into the scaling
factors recorded in the CIF file, so that when the file is read in by a CIF reader it
is scaled correctly.

D a t a F o r m a t s D R C F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

DRC Files

When the Write errors to file checkbox in the Design Rule Check dialog is
checked, design rule errors are written to a text file with the extension .drc . These
files can be opened with any text editor.

For more information on DRC files, see Error Files.

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

EXT Files

The extract definition file contains a list of comments, connection statements,
and device statements, with the following restrictions:

� Layer names are case-sensitive, and must match the case of layer names
defined in the TDB file. The rest of the definition file is case-insensitive;
upper and lower cases can be used interchangeably.

� Layer names cannot contain commas or semicolons and they cannot be
longer than 40 characters.

� Layer names cannot have leading or trailing spaces.

� Pin names cannot contain commas, semicolons, or spaces, and they cannot
be named MODEL.

� Model names cannot contain commas, semicolons, spaces, or closing
parentheses.

� For compatibility with existing extract definition files, the WIDTH parameter
is ignored for all devices except a GAASFET/MESFET.

� IGNORE_SHORTS indicates that if the device has all of its pins connected
to the same node then it will be considered shorted and the device will be
written to the extract netlist file as a comment.

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Comment Statements

A comment statement begins with a pound sign (#) and continues to the end of
the line:

This is an extract definition file comment.

Connection Statements

A connection statement defines a connection between two different process
layers. A connection always involves three layers: the two layers being
connected and the “via” or “contact” layer which connects them. Connection
statements have the following format:

CONNECT (Layer1 , Layer2 , ThroughLayer)

where Layer1 and Layer2 are the names of the layers being connected, and
ThroughLayer is the name of the connecting layer. For example:

Connect Poly to Metal1
CONNECT (Poly, Metal1, PolyContact)

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Device Statements – General Format

A device statement defines a device. Both passive (capacitors, resistors, and
inductors) and active (BJTs, diodes, GaAsFETs, JFETs, MOSFETs, and
subcircuits) devices are specified with the same general format.

All device statements require that a recognition layer — one of the layers
involved in the construction of the device — be identified. You may specify
multiple devices with the same recognition layer (as long as they have different
pins). This is particularly useful in extracting multi-source/drain transistors. The
recognition layer is defined as follows:

RLAYER = rLayer ;

where RLAYER = is required, and rLayer is the name of the recognition layer.

Following the recognition layer is a list of pins on the device. The order of this
list determines the order the pins will be in the extracted netlist. The extractor
does not require any particular order, but LVS requires that both source netlists
contain pins in the same order, and SPICE simulators also have strict rules about
the order in which pins appear. We recommend following the standard SPICE
orders:

� BJT devices: collector —þbase —þemitter —þsubstrate

� All other active devices: drain — gate —þsource —þbulk

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

If the pin names used are Collector , Base , Emitter , and Substrate (BJT
devices), or Drain , Gate, Source , and Bulk (all other active devices), then they
are sorted automatically.

Pins are specified as follows:

pinName = pinLayer ;

where pinName is the name of the pin and pinLayer is the name of the associated
layer.

Extract uses the formula for calculating the value of the
extracted resistance, where ρ is the sheet resistance in units of ohms/square, l is
the length, and w is the width. The value of ρ is taken from the number specified
with Setup > Layers for the recognition layer of the resistor. The values of l and
w are determined from the layout.

The extractor computes the area of the recognition layer and divides it by the
effective width to obtain l. The effective width is the average of W+ and W–.

R ρ l w⁄()×=

W– W+Ylayer Xlayer Zlayer

Plus Recognition Layer Minus

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Following the list of pins is a model definition. This definition is not required
(MODEL =; is acceptable). The model name, if present, will be written into the
extracted netlist. For SPICE, model names are not generally required for
capacitors, resistors, inductors, or diodes, but are required for all other devices.
Model statements have the form:

MODEL = [ModelName] ;

where MODEL = is required and ModelName is the optional model name. The
empty statement MODEL =; is still required if no model name is specified.

Device Statements – Specific Formats

In the following format specifications:

� Unitalicized words and characters (except brackets []) are to be entered as
shown.

� Variables containing the string Layer represent layer names.

� ModelName represents the SPICE model name for the device.

Capacitor

DEVICE=CAP (
RLAYER = rLayer ;
Plus = Layer1 ;

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Minus = Layer2 ;
MODEL = ModelName ;

) [IGNORE_SHORTS]

A capacitor has the following format in the SPICE output statement:

Cxxx n1 n2 ModelName [C=] cValue

The following rules apply to capacitors:

� The capacitance will be based on the area of the recognition layer (rLayer).

� Capacitance is calculated as follows:

Ctotal = C area + C fringe
Carea = (Area of Layer) * (Layer Area Capacitance)
Cfringe = (Layer Perimeter) * (Layer Fringe

Capacitance)

� The fringe capacitance (fF/micron) and area capacitance (aF/sq. micron) are
specified in the Setup > Layers dialog for each specific layer.

Resistor

DEVICE=RES (
RLAYER = rLayer ;
Plus = Layer1 ;
Minus = Layer2 ;
MODEL = ModelName ;

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

) [IGNORE_SHORTS]

A resistor has the following format in the SPICE output statement:

Rxxx n1 n2 ModelName [R=] rValue

The following rules apply to resistors:

� The resistance is calculated based on the area of the recognition layer
(rLayer) and the widths of the edges of the Plus pin and Minus pin that
touch the recognition layer (rLayer).

� Resistance is calculated as follows:

R = ρ ∗ (length/width)

� The sheet resistance ρ (ohms/square) is specified in the Setup > Layers
dialog for the recognition layer.

Inductor

DEVICE=IND (
RLAYER = rLayer ;
Plus = Layer1 ;
Minus = Layer2 ;
MODEL = ModelName ;

) [IGNORE_SHORTS]

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

An inductor has the following format in the SPICE output statement:

Lxxx n1 n2 ModelName [L=]

No inductance value is calculated by the Extract module.

BJT

DEVICE=BJT (
RLAYER = rLayer [,AREA] ;
Collector = cLayer ;
Base = bLayer ;
Emitter = eLayer ;
Substrate = sLayer ;
MODEL = ModelName ;
NominalArea = areaVal ;

) [IGNORE_SHORTS]

A BJT device has the following format in the SPICE output statement:

Qxxx nc nb ne ModelName [AREA= pinArea / areaVal]

The following rules apply to BJT devices:

� Nominal area can be expressed either in decimal or scientific notation, and
has units of m2 but no unit tag will appear after the value.

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

� If no AREA keyword is present, the area will not be written to the SPICE
statement.

Diode

DEVICE=DIODE (
RLAYER = rLayer [, AREA] ;
Plus = Layer1 ;
Minus = Layer2 ;
MODEL = ModelName ;
NominalArea = areaVal ;

) [IGNORE_SHORTS]

A diode has the following format in the SPICE output statement:

Dxxx n1 n2 ModelName [AREA= pinArea / areaVal]

The following rules apply to diodes:

� Nominal area can be expressed either in decimal or scientific notation, and
has units of m2 but no unit tag will appear after the value.

� If no AREA keyword is present, the area will not be written to the SPICE
statement.

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

GAASFET/MESFET 1

DEVICE=GAASFET (
RLAYER = rLayer [, AREA] ;
Drain = dLayer ;
Gate = gLayer ;
Source = sLayer ;
Bulk = bLayer ;
MODEL = ModelName ;
NominalArea = areaVal ;

) [IGNORE_SHORTS]

A GAASFET/MESFET device has the following format in the SPICE output
statement:

Zxxx nc nb ne ModelName [AREA= pinArea / areaVal]

The following rules apply to GAASFET/MESFET devices:

� Nominal area can be expressed either in decimal or scientific notation, and
has units of m2 but no unit tag will appear after the value.

� If no AREA keyword is present, the area will not be written to the SPICE
statement.

� GAASFET/MESFET definition is distinguished only by the presence of the
AREA or WIDTH keyword. L-Edit determines the appropriate output based
on the keyword.

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

GAASFET/MESFET 2

DEVICE=GAASFET (
RLAYER = rLayer ;
Drain = dLayer [, WIDTH] ;
Gate = gLayer ;
Source = sLayer [, WIDTH] ;
Bulk = bLayer ;
MODEL = ModelName ;

) [IGNORE_SHORTS]

A GAASFET/MESFET device has the following format in the SPICE output
statement:

Zxxx nd ng ns ModelName L= length W=width

The following rules apply to GAASFET/MESFET devices:

� The length is the length of gate, and the width is the width of the indicated
layer in contact with the gate. The length and width have units of meter.

� The optional WIDTH parameter for a GAASFET/MESFET may be
specified on only the drain or source pin but not both, and is used to indicate
the layer for which width will be calculated.

� GAASFET/MESFET definition is distinguished only by the presence of the
AREA or WIDTH keyword. L-Edit determines the appropriate output based
on the keyword.

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

� If no WIDTH keyword is present, the width and length will not be written to
the SPICE statement.

JFET

DEVICE=JFET (
RLAYER = rLayer [, AREA] ;
Drain = dLayer ;
Gate = gLayer ;
Source = sLayer ;
Bulk = bLayer ;
MODEL = ModelName ;
NominalArea = areaVal ;

) [IGNORE_SHORTS]

A JFET device has the following format in the SPICE output statement:

Jxxx nd ng ns ModelName [AREA= pinArea / areaVal]

The following rules apply to JFET devices:

� Nominal area can be expressed either in decimal or scientific notation, and
has units of m2 but no unit tag will appear after the value.

� If no AREA keyword is present, the area will not be written to the SPICE
statement.

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

MOSFET

DEVICE=MOSFET (
RLAYER = rLayer ;
Drain = dLayer [, AREA] [, PERIMETER[/GATE= #]] ;
Gate = gLayer ;
Source = sLayer [, AREA] [, PERIMETER[/GATE= #]] ;
Bulk = bLayer ;
MODEL = ModelName ;

) [IGNORE_SHORTS]

A MOSFET device has the following format in the SPICE output statement:

Mxxx nd ng ns nb ModelName L= lengthValue W=widthValue
[AD= areaValue] [PD= perimeterValue] [AS= areaValue]
[PS= perimeterValue]

The following rules apply to MOSFET devices:

� The length is the length of gate, and the width is the average of the width of
the source and drain in contact with the gate. The length and width have
units of meter.

� The optional AREA parameter for a MOSFET may be specified on the drain
or source pin or both, and is used to indicate whether the area for that layer
will be calculated and written for the AD (Drain Area) and AS (Source Area)
output values.

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

� The optional PERIMETER parameter for a MOSFET may be specified on
the drain or source pin or both, and is used to indicate whether the perimeter
for that layer will be calculated and written for the PD (Drain Perimeter) and
PS (Source Perimeter) output values.

� The optional /GATE=# parameter that is used with the PERIMETER
parameter for a MOSFET may be specified on the drain or source pin or
both, but only where the PERIMETER parameter has already been
designated. The number is a floating point value between 0.0 and 1.0,
indicating the fraction of gate width to include in the perimeter. If the /
GATE=# parameter is missing, the perimeter will include the gate width.

Subcircuit

Subcircuits can be defined explicitly for the extractor. This method of describing
subcircuits is different from automatic subcircuit instance recognition (see
Subcircuit Recognition).

DEVICE=SUBCKT (

RLAYER = rLayer [, AREA] ;
pinName = pinLayer [, AREA] ;
pinName = pinLayer [, AREA] ;
. . .
MODEL = ModelName ;
NominalArea = areaVal ;

) [IGNORE_SHORTS]

D a t a F o r m a t s E X T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

A subcircuit has the following format in the SPICE output statement:

Xzzz n1 n2 n3 ... cName [AREA= rLayerArea / areaVal]
[AREA_pinName= pin1Area / areaVal]
[AREA_pinName= pin2Area / areaVal] ...

The following rules apply to subcircuits:

� The optional AREA parameter for a subcircuit may be specified on one or
more layers and an area will be calculated for the indicated layer.

� Nominal area can be expressed either in decimal or scientific notation, and
has units of m2 but no unit tag will appear after the value.

� If no AREA keyword is present, the area will not be written to the SPICE
statement.

D a t a F o r m a t s G D S I I F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

GDS II Files

GDS II (stream) is a standard, machine-readable format for representing IC
layout. GDS II files are typically saved with the .gds extension.

Importing and Exporting

GDS II files are loaded with File > Import Mask Data and saved with File >
Export Mask Data , and by selecting GDSII in the Import/Export file type drop-
down menu. Unlike previous versions of TDB files, which are saved with the
.tdo extension, backup files of previous GDS II files are not created. Instead,
when you try to write to an existing GDS II file L-Edit presents a warning about
overwriting the file.

L-Edit assigns a number to each layer in the design in order to conform to GDS II
syntax. To modify a GDS II layer number prior to exporting the file, use Setup >
Layers to open the Setup Layers – General dialog. Select the layer in the
Layers list, and enter the appropriate value in the GDSII number field.

Geometry on hidden layers cannot be written out in GDS II format. If this is
attempted, then a warning appears.

D a t a F o r m a t s G D S I I F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Interpretation

GDS II stream format is a binary file format for interchanging mask geometry
information between different IC CAD systems. The L-Edit implementation of
GDS II file reading and writing conforms to the Calma Stream Format, GDS II
release 3.0, with some limitations.

A GDS II file may contain a single design or a library of designs. GDS II
assumes right-handed geometry, with the x-axis increasing to the right and the y-
axis increasing upward. The basic unit is set to the GDS II default (user unit = 1
micron and 1000 database units per user unit).

Most L-Edit elements have a one-to-one correspondence with elements of GDS
II stream files. GDS II last access time information is not supported by L-Edit.
L-Edit circles are approximated by GDS II polygons. L-Edit cell names may be
modified going to GDS II.

The table below shows the correspondence between L-Edit elements and their
GDS II names. GDS II data types for L-Edit boxes, wires, and polygons can be
viewed and edited in the Edit Object(s) dialog with Edit > Edit Object(s) .

L-Edit GDS II

File Stream file

Cell Definition Structure

D a t a F o r m a t s G D S I I F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

* L-Edit boxes are written to GDS II files as 4-sided boundaries (polygons). When reading
boundaries from a GDS II file, L-Edit checks each one to see if it is a 4-sided orthogonal polygon, and
if so, represents it as an L-Edit box.

** GDS II boxes are not intended to be mask geometry and are generally discarded by mask-making
software. If L-Edit encounters GDS II boxes while reading a GDS II file, a dialog is presented with
two options: discard all GDS II boxes or convert them to L-Edit boxes (mask geometry).

*** L-Edit circles are written by default as 64-sided polygons.

Box Boundary *

Box ** Box

Polygon Boundary

Wire Path

Circle Boundary ***

Instance SRef

Array ARef

Port Text

Data type Data type

L-Edit GDS II

D a t a F o r m a t s G D S I I F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

GDS II allows only the following restricted set of characters in cell names. “a” …
“z”, “A” … “Z”, “0” … “9”, underscore “_”, question mark “?”, and dollar sign
“$”. L-Edit cell names may include a much richer set of characters, some of
which would be illegal in GDS II. Therefore, L-Edit checks each cell name
before writing it out to a GDS II file. If any spaces “ ” are found, then L-Edit
replaces them with underscores “_” in the GDS II file. If any other illegal
characters are found, then L-Edit requests that you change the name.

Some GDS II systems do not recognize lower case letters in cell names. For
interfacing with these systems, L-Edit provides the capability to write all cell
names to a GDS II file in upper case. This option is enabled by a check box in the
File > Export Mask Data , Options button dialog.

GDS II does not contain a specification for circles. Therefore, L-Edit
approximates circles using 64-sided polygons. Thus, circles are not preserved
through writing a GDS II file and reading it back in.

L-Edit supports all-angle rotations of instances (in integer degrees; fractional
angles are rounded without warning) and 90° rotations of text.

Due to the treatment of 4-sided polygons upon being read in, L-Edit polygons
that happen to be orthogonally oriented rectangles will not be preserved through
writing to a GDS II file and reading back in. These special polygons will come
back into L-Edit as boxes. Of course, from the standpoint of the mask that gets
fabricated, there is no difference between a box and its equivalent polygon.

D a t a F o r m a t s G D S I I F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Many different versions of GDS II readers and writers exist. Some newer
versions produce elements which are not compatible with older versions of GDS
II. The elements in L-Edit are confined to elements which are common to all.

Wires

The GDS II layout format allows for three different types of wires (paths): paths
with butt ends and square corners, paths with extended ends and square corners,
and paths with round ends and round corners. The three GDS II pathtypes
correspond to three of the twelve possible L-Edit wires. When reading GDS II
paths, L-Edit sets end styles and join styles appropriate for the three GDS II
pathtypes. When creating GDS II output, L-Edit chooses the GDS II pathtype
according to the following table. (Some of the wire-to-path conversions are
accompanied on output by a warning message; these are indicated in the table
with an asterisk *.)

End Style Join Style GDS II Pathtype

Butt Layout 0

Butt Miter 0 *

Butt Round 0 *

Butt Bevel 0 *

Round Layout 1 *

D a t a F o r m a t s G D S I I F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Upon fabrication, many fabricators such as MOSIS and Orbit run GDS II files
through CATS (a high-end program used by many fabricators and mask houses
to produce formats for specific mask-making equipment from GDS II layout
files). CATS uses its own clipping algorithm for acute angle GDS II paths with a
pathtype of 0 or 2. This algorithm corresponds exactly to the L-Edit layout wire
join style, the default wire join style. Layout join style employs a fixed miter
length of one-half the width of the wire for wires with an acute join angle.

When you are about to use wires for the first time or you are setting up the
technology files for others who may use wires, take a moment to set up the wire
defaults for each layer according to whether your likely output format will be
GDS II. For GDS II, use one of the three legitimate combinations of end style
and join style. It is also strongly recommended that you contact your fabricator

Round Miter 1 *

Round Round 1

Round Bevel 1 *

Extend Layout 2

Extend Miter 2 *

Extend Round 2 *

Extend Bevel 2 *

End Style Join Style GDS II Pathtype

D a t a F o r m a t s G D S I I F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

before you define the wire styles for your design and understand how they will
interpret GDS II wires.

D a t a F o r m a t s I N I F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

INI Files

Application configuration (INI) files save application settings. These files are
specified with Setup > Application . All parameters on the Setup Application —
General tab and changes made to keyboard mapping are saved to INI files.

Following is the list of parameters saved in INI files.

INI files use the Windows INI file format and can be edited with any text editor.

Parameter More information

Keyboard remapping Setup Application – Keyboard

Editing options Setup Application – General

TDB setup path Setup Application – General

Toolbar settings Setup Application – General

Recently used file list size Setup Application – General

UPI macro files loaded at startup Tools> Macro

D a t a F o r m a t s I N I F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Workgroup and User Files

Information from an INI file is loaded into L-Edit as either a Workgroup or a
User file. Workgroup files are intended to be shared by multiple users; for
example, they may contain key remapping sequences that will be used by many
users. User files are intended to contain preferences specific to a particular user.
It is most likely that a Workgroup file would reside on a network, while a User
file would reside on an individual user’s machine.

Changes in the Setup Application dialog can only be saved to User
configuration files. Therefore, an INI file loaded as a Workgroup file is protected
from accidentally being changed.

D a t a F o r m a t s R U L F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

RUL Files

When design rules are written to a file with the Write to file button in the Setup
Design Rules dialog, the default extension on the file is .rul . RUL files are text
files and can be opened with any text editor.

RUL files cannot be read by L-Edit’s layout editor. To import a set of design
rules into an existing L-Edit design file, use File > Replace Setup and the choose
the appropriate TDB or TTX file.

For more information on RUL files, see Rule Lists.

D a t a F o r m a t s S P C F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

SPC Files

SPC files are standard Berkeley 2G6 SPICE netlists. They can be used with
Tanner EDA’s T-Spice circuit simulator, or with any other tools that read SPICE
netlists.

Device Statements

Passive Devices

Passive element (capacitor, resistor, or inductor) statements have the following
form:

Cxxx n1 n2 [ModelName] [C=] cValue
Rxxx n1 n2 [ModelName] [R=] rValue
Lxxx n1 n2 [ModelName] [L=]

xxx Unique element name

n1 n2 Node names

ModelName Device model name. Model names must be
defined with .model commands.

cValue Capacitance

D a t a F o r m a t s S P C F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Extract does not write the inductance value.

For example:

C1 N1997 SET1 C=120pF

This defines a 120 pF capacitor C1 with one pin connected to node N1997 and
the other connected to node SET1.

Active Devices

Active or semiconductor device (diode, BJT, GAASFET/MESFET, JFET, or
MOSFET) statements have the following form:

Dxxx n1 n2 ModelName [AREA= pinArea / areaVal]
Qxxx nc nb ne [ns] ModelName [AREA= pinArea / areaVal]
Zxxx nc nb ne ModelName [AREA= pinArea / areaVal]
Zxxx nd ng ns ModelName L= length W=width
Jxxx nd ng ns ModelName [AREA= pinArea / areaVal]
Mxxx nd ng ns [nb] ModelName L= lengthValue W=widthValue

[AD= areaValue] [PD= perimeterValue] [AS= areaValue]

rValue Resistance

D a t a F o r m a t s S P C F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

[PS= perimeterValue]

Parameters may appear in any order.

For example:

M12 17 19 21 21 PMOS L=2U W=28U

xxx Unique element name

n1 n2 Diode node names

nc nb ne ns Collector, base, emitter, and substrate node
names (BJT devices)

nd ng ns nb Drain, gate, source, and bulk node names
(GAASFET/MESFETs, JFETs, and
MOSFETs)

ModelName Device model name. Model names must be
defined with .model commands.

aValue Area parameter

length Length parameter

width Width parameter

D a t a F o r m a t s S P C F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

defines a PMOS transistor M12. The drain node is 17, the gate node is 19, and the
source node and bulk nodes are the same, 21. The transistor is 2 microns long and
28 microns wide.

Subcircuit Instances

A subcircuit is a list of devices and nodes which can be instanced repeatedly.
Subcircuit instance statements have the following form:

Xzzz n1 n2 n3 ... cName [AREA= rLayerArea / areaVal]
[AREA_pinName= pin1Area / areaVal]
[AREA_pinName= pin2Area / areaVal] ...

zzz Unique element name

n1 n2 n3 … Node names. There must be as many node
names listed as there are in the subcircuit
definition.

cName Subcircuit name

param1=value1
param2=value2 …

Parameters specified by the subcircuit
definition. If a particular parameter is not
specified on the device statement, then its
default value is assumed from the subcircuit
definition.

D a t a F o r m a t s S P C F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

For example:

X123 N125 N253 N74 myCircuit AREA=100 AREA_Pin1=15

This defines an instance X123 of a subcircuit called myCircuit . It has three pins,
connected to nodes N125, N253, and N74.

Device Commands

Subcircuits

The subcircuit definition command has the following form:

.SUBCKT cName pin1 [pin2 ...] [param1=value1]
[param2=value2 ...]
<subcircuit statements>

.ENDS [cName]

cName Subcircuit name

pin1 pin2 … Pin (input/output) names

param1=value1
param2=value2 …

Parameters

D a t a F o r m a t s S P C F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

In between the first (.subckt) and last (.ends) lines are any number of SPICE
device statements defining a functional unit. The only statements not allowed
within a subcircuit definition are subcircuit and model commands. If the body of
the subcircuit definition is empty, then the subcircuit must be defined in an
element definition file to be used with LVS.

The extractor itself does not insert the subcircuit definition body between the
.subckt and .ends lines. The SUBCKT mechanism has been adopted in Extract
primarily to aid in doing LVS verification of non-standard (i.e., non-SPICE)
elements such as CCDs. If subcircuit will be simulated, do not use the .subckt
statements; if they are used, the appropriate body must be supplied to handle the
subcircuit during simulation. Refer to the LVS manual for more information on
how to utilize subcircuits during LVS verification.

Models

A model command defines a model name to be used in device statements. The
model command can appear anywhere in the SPICE file, even after the model
being defined is used in an element statement. The format of a model command
is as follows:

.MODEL Modelname ...

where Modelname is the name of the model which is specified in the extract
definition file.

D a t a F o r m a t s S P C F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

For example:

.MODEL MYDEVICE

could be elsewhere in the netlist as:

M123 42 51 7 7 MYDEVICE L=2U W=28U

which defines a transistor M123 using model MYDEVICE. Its drain is connected
to node 42, its gate to node 51, and its source and bulk to node 7. It has a length
of 2 microns and a width of 28 microns.

End

Anything after the following command in a SPICE file is ignored:

.END

Comments

SPICE comment lines begin with an asterisk (*).

D a t a F o r m a t s S P C F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Non-Standard Devices

The SPICE format used by Extract only allows for the devices described above.
Non-standard devices (such as multi source/drain transistors and CCDs) are
written as empty subcircuit definitions with an instance statement for each
device. For simulation purposes the subcircuit definitions can be manually
edited. For LVS comparison, you can specify the subcircuits as special devices in
the element file.

D a t a F o r m a t s T D B F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

TDB Files

Tanner Database (TDB) is a proprietary, machine-readable format optimized for
the Tanner Tools environment. TDB files are typically saved with the .tdb
filename extension and are opened with File > Open . By default, the scrollable
list displays TDB files.

In addition to the design itself, a TDB file contains setup information including:
layer rendering information, CIF and GDS II setup information, design rules, and
L-Edit configuration settings. The TDB format can be read, displayed, and
modified by L-Edit on any platform, and is the preferred format for storing
L-Edit design information. The setup information can also be stored in Tanner
Text (TTX) format and edited directly in a text editor. The setup information can
be read back into L-Edit in either the TDB or the TTX format with File >
Replace Setup .

TDB files are saved with File > Save or File > Save As . When a TDB file is
saved, L-Edit automatically backs up previously-saved versions of the filename
by preserving them with a .tdo extension.

D a t a F o r m a t s T P R F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

TPR Files

Only netlist files in Tanner Place and Route (TPR) format can be used by
L-Edit ⁄ SPR to generate chip layouts. TPR files are ASCII text files that are
generated automatically by the schematic editor S-Edit or they can be created
with any text editor.

Syntax

A portion of the TPR netlist file for the bargraph example is shown below.

Comment line $ TPR written by the Tanner Research schematic editor, S-Edit

$ Version: 2.0 Beta 5 Jan 7, 1998 16:07:16

Pad cell definition CP PadOut DataOut Pad;

Instance definition UPadOut_1 N2 PAD_B1_L31;

:

CP PadInC DataIn DataInB DataInUnBuf Pad;

UPadInC_1 N68 IPAD_9/N2 IPAD_9/N1 PAD_L9_SCO;

D a t a F o r m a t s T P R F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

In the two lines above, DataIn , DataInB , and DataInUnBuf are the names of ports
in the pad cell PadInC (PortList). N68, IPAD_9/N2, and IPAD_9/N1 are the
names of nets attached to these ports (NetList). PAD_L9_SCO is the name given
to the body region of the pad. “L9” identifies the position of the pad as the ninth
pad from the top on the left side of the padframe.

:

Ground pad CP PadGnd Pad;

UPadGnd_1 PAD_R8_GND;

Power pad CP PadVdd Pad;

UPadVdd_1 PAD_L6_VDD;

:

Cell definition C INV A Out;

Instance definition UINV_3 BARGRAPH_1/BG64_2/N9 BARGRAPH_1/BG64_2/SFT3;

:

C Mux2 A B Out Sel;

D a t a F o r m a t s T P R F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

In the three lines above, A, B, Out , and Sel are ports in the standard cell Mux2
(PortList). BARGRAPH_1/BG64_1/BG4_1/N118 , BARGRAPH_1/BG64_1/
BG4_1/N108, N62, and BARGRAPH_1/BG64_1/S11 are the names of nets
attached to these ports (NetList). Note that these net names include the
hierarchical structure of the schematic. This is the manner in which S-Edit
creates a “flattened” TPR netlist.

A plus sign (+) indicates a continuation of the previous line.

Interpretation

Pad cells are defined in the format:

CP <padname> <pin1> <pin2> … Pad
U<gateUID> <net1> <net2> … Pad_<PadPosition>

Standard cells are defined in the format:

C <cellname> <pin1> <pin2> …
U<gateUID> <net1> <net2> …

A TPR file must conform to the following rules:

UMux2_1 BARGRAPH_1/BG64_1/BG4_1/N118 BARGRAPH_1/BG64_1/BG4_1/N108 N62

+ BARGRAPH_1/BG64_1/S11;

D a t a F o r m a t s T P R F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

� All signals which are to be routed within the core or from the core to the
padframe are required to be listed, with the exception of the Vdd and Gnd
signal connections to pads.

� For each cell, the PortList and NetList must have the same number of
elements.

� The name “PAD” in the PortList of a pad cell refers to the actual bonding
region of the pad, and is not actually involved in the placement and routing
process. Pad cells must have a signal marked “PAD.”

� The bonding region of a pad can contain the location of the pad on the
padframe. For example, “B1” stands for the leftmost pad on the bottom side
of the padframe. (L = Left, B = Bottom, R = Right, T = Top.)

� Power and ground pads do not have to be included in the netlist. If they are
not included, L-Edit⁄ SPR will place them automatically.

� The parts listed in the file must match the cells contained in the layout
library. To match, the name of the part must be identical to the name of the
library cell (except for case), and every signal listed in the part description
must have at least one port of the same name somewhere in the library cell.

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

TTX Files

Tanner Text (TTX) files contain setup information saved with File > Export
Setup . The setup information can be read back into L-Edit with File > Replace
Setup .

Syntax

The TTX format is organized by categories. Default values are assumed when
categories are not specified.

A formal description of TTX syntax follows the table of variables used in the
description. In the following table more than one value is possible for each of the
string variables. Possible values are separated by vertical bars (|). Numbers can
be written in either hexadecimal or decimal format unless specified otherwise.

Variable Type Value

C Numerical Color index number from 0–15

H Numerical Hex number

I Numerical Long integer

L Numerical Number of locator units

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

N Numerical Number

P Numerical Number of pixels

R Numerical Real number

U Numerical Number of internal units

V Numerical Color value number from 0–255

boolean String TRUE | FALSE

cursor String SNAPPING | SMOOTH

end String BUTT | ROUND | EXTEND

join String MITER | ROUND | BEVEL |
LAYOUT

layer String [any valid layer name]

mode String set | clear

name String [any valid name]

operation String AND | OR

option String SELECT | NOT SELECT

Variable Type Value

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Single-line comments beginning with // can be placed anywhere throughout the
file. Curly brackets { } delimit sets of items.

Layer = {
LayerName=” name”
Lock= boolean
Hidden= boolean
AreaCapacitance= R
FringeCapacitance= R
Resistivity= R

rule String MIN_WIDTH | EXACT_WIDTH |
OVERLAP | EXTENSION |
NOT_EXISTS | SPACING |
SURROUND

style String ARROWS_AT_BOTH_END |
NO_ARROWS

text String NO_TEXT | CENTERED |
AT_END_POINTS |
AT_TICK_MARKS

unit String microns | millimeters |
centimeters | mils | inches |
lambda | other

Variable Type Value

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

CIFName=” name”
GDSNum=N
ObjectPass = {

SelectionPass = {
ColorNumber= N
WriteMode=” mode”
StipplePattern = {

H, H, H, H, H, H, H, H
}

}
Pass1 = {

ColorNumber= N
WriteMode=” mode”
StipplePattern = {

H, H, H, H, H, H, H, H
}

}
}
PortPass = {

SelectionPass = {
ColorNumber= N
WriteMode=” mode”
StipplePattern = {

H, H, H, H, H, H, H, H
}

}
Pass1 = {

ColorNumber= N
WriteMode=” mode”

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

StipplePattern = {
H, H, H, H, H, H, H, H

}
}

}
TextPass = {

SelectionPass = {
ColorNumber= N
WriteMode=” mode”
StipplePattern = {

H, H, H, H, H, H, H, H
}

}
Pass1 = {

ColorNumber= N
WriteMode=” mode”
StipplePattern={

H, H, H, H, H, H, H, H
}

}
}
Wire = {

Width= I
MiterAngle= I
End=” end”
Join=” join ”

}
}

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

SpecialLayer = {
Grid=” layer ”
Dragbox=” layer ”
Origin=” layer ”
CellOutline=” layer ”
Error=” layer ”
Icon=” layer ”
FirstMask=” layer ”

}

Drawing = {
DefaultPortTextSize= L
NudgeAmount= N
RulerSettings = {

TextSize= N
TextLocation=” text ”
EndStyle=”style”
ShowTickMarks= boolean
MajorTick= N
MinorTick= N
SymmetricTickMarks= boolean
DefaultLayer=” layer ”

}
}

Palette = {
V6StylePalette= boolean
RGBColor C=V, V, V

}

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Technology = {
Name=”name”
Unit_name=” unit ”
Int_Unit_num= N
Int_Unit_denom= N
Lambda_num=N
Lambda_denom=N

}

DerivedLayer = {
TargetLayer=” layer ”
EnableEvaluation= boolean
SourceLayer1=” layer ”, boolean , I
SourceLayer2=” layer ”, boolean , I
SourceLayer3=” layer ”, boolean , I
Layer1BoolLayer2=” operation ”
Layer2BoolLayer3=” operation ”

}

DesignRuleSetup = {
RuleSet = ” name”
Tolerance = I

}

DesignRule = {
RuleName=” name”
Enable= boolean
RuleType=” rule ”

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

IgnoreCoincidences= boolean
IgnoreIntersections= boolean
IgnoreEnclosures= boolean
Ignore45AcuteAngles= boolean
Layer1Name=” name”
Layer2Name=” name”
Distance= I
UseLocatorUnits= boolean

}

Grid = {
Displayed= U
SuppressLessThan= P
MouseSnap=U
CursorType=” cursor ”
LocatorUnit= U

}

Selection = {
SelectionRange= N
DeselectionRange = N
EditRange = {

Locator_Unit= N
Pixels= N

}
DrawnObject=” option ”

}

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Interpretation

Layer

An unlimited number of separate layer specifications may be made. The
minimum requirement for a layer specification is the LayerName . The other
parameters take default values as follows.

Parameter Default More information

Lock FALSE Setup > Layers

Hidden FALSE Setup > Layers

AreaCapacitance 0.0 Setup > Layers . Floating-point
number.

FringeCapacitance 0.0 Setup > Layers . Floating-point
number.

Resistivity 0.0 Setup > Layers . Floating-point
number.

CIFName null Setup > Layers and CIF Files

GDSNum null Setup > Layers and GDS II Files

[minimum number of
passes per pass list]

2 Setup > Layers

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

ColorNumber 15 Setup > Layers

WriteMode SET Setup > Layers

StipplePattern [empty] Setup > Layers . StipplePattern
is an 8x8 bit representation of the
layer’s stipple. Patterns are
described as 8 pairs of
hexadecimal numbers (for
example: FF, 8B, A4) where each
pair represents 8 bits. 8 such pairs
represents 64 bits (8x8): the
whole stipple pattern.

Width 0 Wire Styles

MiterAngle 90 Wire Styles

End EXTEND Wire Styles

Join LAYOUT Wire Styles

Parameter Default More information

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Special Layers

Only special layers to be modified should be named. The default values are as
follows.

Parameter Default More information

Grid Grid Setup > Special Layers

DragBox Drag Box Setup > Special Layers

Origin Origin Setup > Special Layers

CellOutline Cell Outline Setup > Special Layers

Error Error Setup > Special Layers

Icon Icon Setup > Special Layers

FirstMask Poly Setup > Special Layers

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Drawing

The default settings for the file and ruler parameters are as follows.

Parameter Default More information

DefaultPortTextSize 5 Setup > Design . Locator
units.

NudgeAmount 1 Setup > Design

TextSize 5 Setup > Design

TextLocation AT_TICK_MARKS Setup > Design

EndStyle NO_ARROWS Setup > Design

ShowTickMarks TRUE Setup > Design

MajorTick 10 Setup > Design

MinorTick 1 Setup > Design

SymmetricTickMarks FALSE Setup > Design

DefaultLayer Current Layer Setup > Design

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Palette

The color palette contains 16 different colors, with index numbers ranging from 0
to 15. The colors are made by mixing different amounts of red, blue, or green.
The amount of each can be varied from 0 to 255. The defaults are as follows.

Parameter Default (red,
blue, green)

More information

V6StylePalette TRUE In previous versions of L-Edit,
each color could be selected from
one of 64 possible colors. In
version 7, you can select each
color from one of 16.7 million
available.

When a TTX file from a previous
version is loaded into L-Edit, the
V6StylePalette flag is inserted
with the default value TRUE.
This indicates that the earlier
style palette should be used.

RGBColor0 255, 255, 255 Setup > Palette

RGBColor1 85, 85, 255 Setup > Palette

RGBColor2 85, 255, 35 Setup > Palette

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

RGBColor3 85, 170, 170 Setup > Palette

RGBColor4 255, 85, 85 Setup > Palette

RGBColor5 170, 85, 170 Setup > Palette

RGBColor6 170, 170, 85 Setup > Palette

RGBColor7 170, 170, 170 Setup > Palette

RGBColor8 170, 170, 170 Setup > Palette

RGBColor9 0, 0, 170 Setup > Palette

RGBColor10 0, 170, 0 Setup > Palette

RGBColor11 0, 85, 85 Setup > Palette

RGBColor12 170, 0, 0 Setup > Palette

RGBColor13 85, 0, 85 Setup > Palette

RGBColor14 85, 85, 0 Setup > Palette

RGBColor15 0, 0, 0 Setup > Palette

Parameter Default (red,
blue, green)

More information

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Technology

The minimum requirement for a technology specification is the Name. The other
parameters take default values as follows.

Generated Layers

All required source layers should be defined according to Layer = { … }
constructs before a generated layer is defined. There are no default values for
generated layers.

Parameter Default More information

Unit_name microns Setup Design – Technology

Int_Unit_num 1 Setup Design – Technology

Int_Unit_denom 1000 Setup Design – Technology

Lambda_num 1 Setup Design – Technology .
Required only if Unit_name =
“lambda.”

Lambda_denom 1 Setup Design – Technology .
Required only if Unit_name =
“lambda.”

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Design Rules

A complete design rule specification requires a DesignRuleSetup definition and
at least one DesignRule definition. If UseLocatorUnits is FALSE, then lambda
units are used. There are no default values for design rules.

Grid

The defaults are as follows.

Parameter Default More information

Displayed 1 Setup Design – Grid

SuppressLessThan 8 Setup Design – Grid

MouseSnap 1 Setup Design – Grid

CursorType SNAPPING Setup Design – Grid

LocatorUnit 1 Setup Design – Grid

D a t a F o r m a t s T T X F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Selection

The defaults are as follows.

Parameter Default More information

SelectionRange 10 Setup Design – Selection

DeselectionRange 536870911
[maximum
possible]

Setup Design – Selection

Locator_Unit 0 Setup Design – Selection

Pixels 2 Setup Design – Selection

DrawnObject SELECT Setup Design – Selection

D a t a F o r m a t s X S T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

XST Files

Syntax

A sample definition for an n-well, double-poly, double-metal CMOS process is
shown below. Each line (after the header) corresponds to one process step.

File: mORBn20.xst
For: Cross-section process definition file
Vendor: MOSIS:Orbit Semiconductor
Technology: 2.0U N-Well (Lambda = 1.0um, Technology = SCNA)
Technology Setup File: mORBn20.tdb
Copyright (c) 1991-93
Tanner Research, Inc. All rights reserved

**

L-Edit
Step Layer Name Depth Label [Angle[offset]] Comment
--

gd - 10 p- # 1. Substrate
id "Well X” 3 n- # 2. n-Well
id ActPSelNotPoly 0.9 p+ 75 0 # 3. p-Implant
id ActNSelNotPoly 0.9 n+ 75 0 # 4. n-Implant
id CCD&Act 0.4 - # 5. CCD Implant

D a t a F o r m a t s X S T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

id "P Base" 2 - # 6. NPN Base
Implant
gd - 0.6 - # 7. Field Oxide
e Active 0.6 - 45 # 8.
gd - 0.04 - # 9. Gate Oxide
gd Poly 0.4 - # 10. Polysilicon
e NotPoly 0.44 - 45 # 11.
gd - 0.07 - 45 # 12. 2nd Gate Oxide
gd Poly2 0.4 - # 13. 2nd
Polysilicon
e NotPoly2 0.47 - 60 # 14.
gd - 0.9 - # 15.
e "P/P2/Act Contact" 0.9 - 60 # 16.
gd Metal1 0.6 - # 17. Metal 1
e "Not Metal1" 0.6 - 45 # 18.
gd - 1 - # 19.
e Via 1 - 60 # 20.
gd Metal2 1.15 - # 21. Metal 2
e "Not Metal2" 1.15 - 45 # 22.
gd - 2 - # 23. Overglass
e Overglass 2 - # 24.

Intrepretation

The Cross-Section Process Definition file (XST) contains a list of comment
statements and process statements. No blank lines are allowed in the file;
processing stops at the first blank line. Comment statements begin with a pound
sign (#) in the first column and continue to the end of the line.

D a t a F o r m a t s X S T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

Process statements have the following format:

step layer depth label [angle [offset]] [comment]

The line begins with a step type, one of the following:

� gd or grow/deposit

� e or etch

� id or implant/diffuse

Next is the name of the involved layer . The name of the layer must match the
layer name used in the L-Edit TDB file. If the layer name begins with a digit or
contains spaces, then the entire name must be enclosed in double-quotes ("…").
The layer name describes something different for each type of step:

� For grow/deposit steps: the layer to be grown/deposited

� For etch steps: the layer to be etched away

� For implant/diffuse steps: the layer to be diffused

A dash (-) in place of a layer name indicates that the process step has no
associated rendering information.

Next is a (non-negative) value indicating the depth , measured in technology
units. The depth also means different things for different steps:

D a t a F o r m a t s X S T F i l e s

L - E d i t O n l i n e U s e r G u i d e C o n t e n t s I n d e x H e l p

� For grow/deposit steps: the number of units to grow upward

� For etch and implant/diffuse steps: the number of units downward to apply
the step

Next is an optional label . The label may be any string. If it contains spaces, then
the entire label must be enclosed in double-quotes ("…"). A dash (-) may be
used in place of a label.

If desired, two parameters that apply only to etch and implant/diffuse steps are
inserted next:

� Etch-implant angle (integer)

� Undercut offset (non-negative floating-point or integer)

Angles are measured in degrees and must be between 0 and 180; offsets are
measured in technology units. The default values are angle = 80 and offset = 0.

Last is an optional comment . The comment begins with a pound sign (#) and
continues to the end of the line.

	Format Definitions
	CAP Files
	Syntax
	Interpretation

	CIF Files
	Importing and Exporting
	Interpretation
	Symbols
	Calls (Instances)
	Geometric Primitives
	Layers

	Restrictions
	Extensions
	Wires
	Scaling

	DRC Files
	EXT Files
	Comment Statements
	Connection Statements
	Device Statements – General Format
	Device Statements – Specific Formats
	Capacitor
	Resistor
	Inductor
	BJT
	Diode
	GAASFET/MESFET 1
	GAASFET/MESFET 2
	JFET
	MOSFET
	Subcircuit

	GDS II Files
	Importing and Exporting
	Interpretation
	Wires

	INI Files
	Workgroup and User Files

	RUL Files
	SPC Files
	Device Statements
	Passive Devices
	Active Devices
	Subcircuit Instances

	Device Commands
	Subcircuits
	Models
	End
	Comments

	Non-Standard Devices

	TDB Files
	TPR Files
	Syntax
	Interpretation

	TTX Files
	Syntax
	Interpretation
	Layer
	Special Layers
	Drawing
	Palette
	Technology
	Generated Layers
	Design Rules
	Grid
	Selection

	XST Files
	Syntax
	Intrepretation

